BMath-II, Algebra-IV, Mid-Sem test (2019)

Instructions : Total time 2 hours. Maximum marks 30. You may use results (not problems) done in the class without proof. For any field L, we denote the set of non-zero elements in L by L^* . All questions carry equal marks.

- 1. Let L/\mathbb{Q} be a finite field extension. Prove that the group of elements in the multiplicative group L^* having finite order, is finite. (6)
- 2. Let K be a finite field extension of a field k. Assume that gcd(6, [K:k]) = 1. Prove that for any $u \in K, k(u) = k(u^2) = k(u^3)$. (6)
- 3. Let k be a field and $f(X), g(X) \in k[X]$ be irreducible, deg(f) = m, deg(g) = n. Assume gcd(m,n) = 1. If α be a root of f(X) in some extension of k, prove that g(X) is irreducible in $k(\alpha)[X]$. (6)
- 4. Let p and q be distinct primes. Let L be the splitting field of $X^p q$ over \mathbb{Q} . Compute the degree $[L:\mathbb{Q}]$. (6)
- 5. Let L/k be a finite extension of fields. Assume that L = k(S), $S \subset L$, not necessarily finite, such that $s^2 \in k$ for all $s \in S$. Prove that $[L:k] = 2^r$ for some $r \ge 0$. Give an example to show that in general, in the hypothesis on S, we cannot replace 2 by an odd prime p to conclude $[L:k] = p^r$. (6=2+4)
- 6. Determine all fields K such that the additive group (K, +) is cyclic.
- 7. Show that the polynomials $f(X) = X^3 + X + 1$ and $g(X) = X^3 + X^2 + 1$ over \mathbb{F}_2 are irreducible. Let α be a root of f(X) and β be a root of g(X) and let $K = \mathbb{F}_2(\alpha)$, $L = \mathbb{F}_2(\beta)$. Give an explicit \mathbb{F}_2 -linear field isomorphism $K \cong L$. (6=1+5)

(6)